

ME-332 – Mécanique Vibratoire

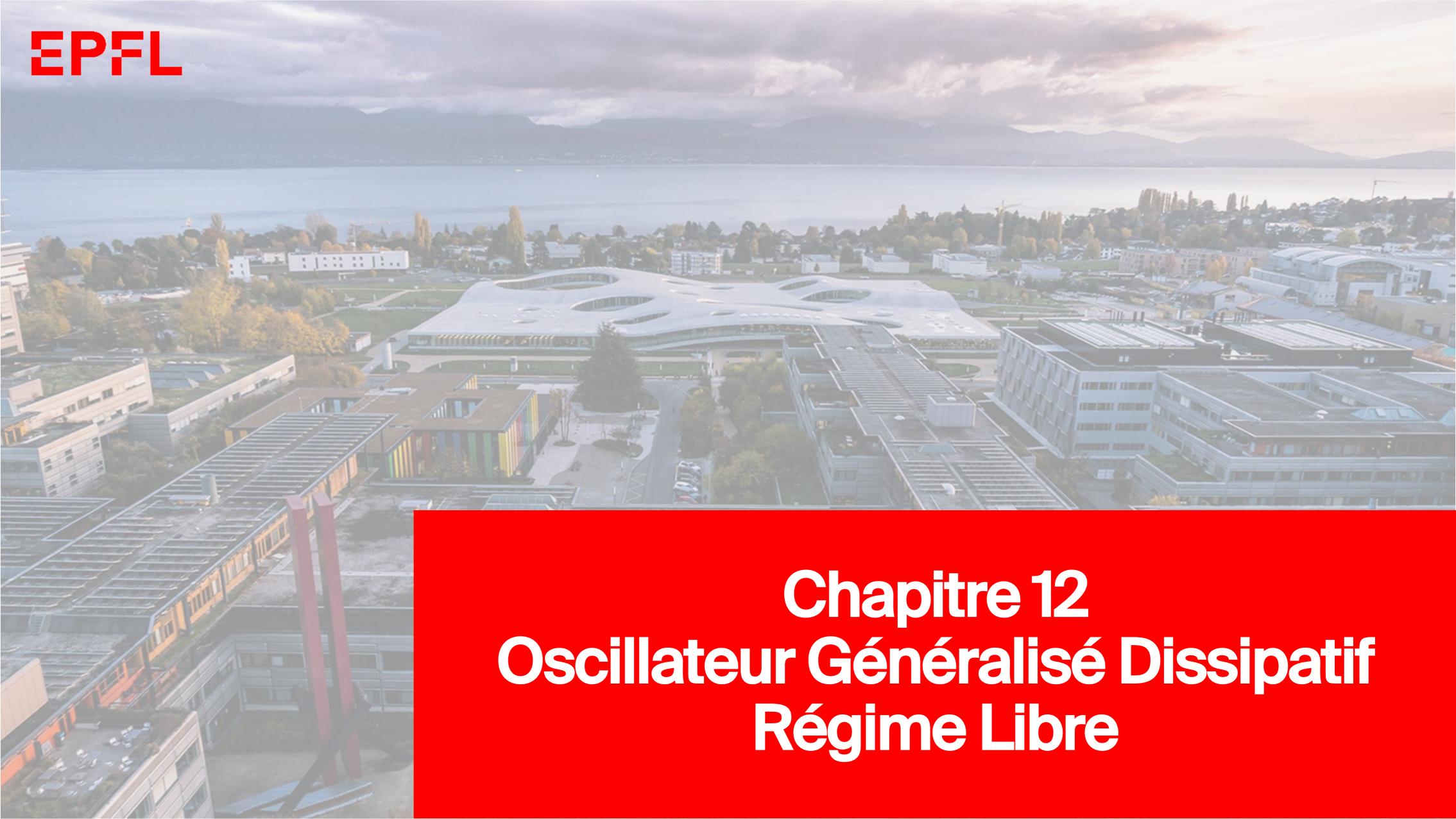
 École polytechnique fédérale

de Lausanne

Prof. Guillermo Villanueva

EPFL Introduction

- Oscillateur généralisé dissipatif
- Condition de Caughey
- Solution en base modale
- Solution approximée pour systèmes pas Caughey



EPFL Oscillateur généralisé dissipatif et libre

Equation différentielle de l'oscillateur généralisé à n degrés de liberté en régime libre dissipatif

$$[M]\ddot{x} + [C]\dot{x} + [K]x = 0$$
 (12.1)

x vecteur des déplacements

 \dot{x} vecteur des vitesses

 \ddot{x} vecteur des accélérations

[M] matrice des masses

[C] matrice des pertes

[K] matrice de rigidité

Résolution du régime libre dissipatif par changement de base

$$\boldsymbol{x} = [B]\boldsymbol{q} \tag{12.2}$$

Reformulation du régime libre dissipatif par le changement de base

$$[M][B]\ddot{q} + [C][B]\dot{q} + [K][B]q = 0 \quad (12.3)$$

Prémultiplication de l'expression du régime libre par la matrice $[B]^T$

$$[B]^{T}[M][B]\ddot{q} + [B]^{T}[C][B]\dot{q}$$
$$+[B]^{T}[K][B]q = 0 \qquad (12.4)$$

EPFL Oscillateur généralisé dissipatif et libre

Prémultiplication de l'expression du régime libre par la matrice $[B]^T$

$$[B]^{T}[M][B]\ddot{q} + [B]^{T}[C][B]\dot{q}$$
$$+[B]^{T}[K][B]q = 0 \quad (12.4)$$

Conditions pour un *découplage* des *n* équations du régime libre dissipatif

$$\begin{cases} [M'] = [B]^T [M][B] \\ [C'] = [B]^T [C][B] \end{cases}$$

$$[K'] = [B]^T [K][B]$$

$$(12.5)$$

avec
$$[M']$$
, $[C']$ et $[K']$ diagonales

EPFL Condition de Caughey

Condition nécessaire et suffisante d'existence d'une matrice [B] diagonalisant simultanément [M], [C] et [K] – Condition de Caughey

Si
$$[M']$$
, $[C']$ et $[K']$ diagonales

$$\Rightarrow [M']^{-1}[C'] \text{ et } [M']^{-1}[K'] \text{ diagonales}$$

$$\Rightarrow [M']^{-1}[C'][M']^{-1}[K']$$

$$= [M']^{-1}[K'][M']^{-1}[C'] \qquad (12.9)$$

$$\Rightarrow [B]^{-1}[M]^{-1}[C][M]^{-1}[K][B]$$

$$= [B]^{-1}[M]^{-1}[K][M]^{-1}[C][B] \quad (12.10)$$

$$\Rightarrow [C][M]^{-1}[K] = [K][M]^{-1}[C] \qquad (12.11)$$

Condition suffisante mais non nécessaire d'existence d'une matrice [B] diagonalisant simultanément [M], [C] et [K]

$$[M]^{-1}[C] = \sum_{i=0}^{n-1} \alpha_i [[M]^{-1}[K]]^i \qquad (12.12)$$

Cas particulier de l'amortissement ou frottement proportionnel

$$[M]^{-1}[C] = \alpha_0[I] + \alpha_1[M]^{-1}[K]$$
$$[C] = \alpha_0[M] + \alpha_1[K] \quad (12.13)$$

Vécanique Vibratoire - SGM Ba5 - G. Villanueva

EPFL Systèmes satisfaisant Caughey

Conséquences d'un amortissement satisfaisant la condition de Caughey

- résolution du régime libre dissipatif selon la démarche modale des systèmes conservatifs
- matrice de changement de base [B]
 identique à la matrice modale du système conservatif associé
- présence de *n* modes vibratoires amortis *réels*, qualifiés de classiques

Equation différentielle du *régime libre* pour un amortissement satisfaisant la condition de Caughey

$$[M^o]\ddot{q} + [C^o]\dot{q} + [K^o]q = 0 \qquad (12.14)$$

avec

$$\begin{cases} [M^o] = [B]^T [M][B] \\ [C^o] = [B]^T [C][B] \end{cases} (12.15)$$
$$[K^o] = [B]^T [K][B]$$

$$[M^o]$$
, $[C^o]$ et $[K^o]$ diagonales

Formulation canonique du *régime libre* (prémultiplication par la matrice $[M^o]^{-1}$)

$$\ddot{q} + [M^o]^{-1} [C^o] \dot{q} + [M^o]^{-1} [K^o] q = 0$$
$$\ddot{q} + [2\Lambda] \dot{q} + [\Omega_0^2] q = 0$$

avec

$$[2\Lambda] = [M^o]^{-1}[C^o]$$

$$= [B]^{-1}[M]^{-1}[C][B]$$

$$[\Omega_0^2] = [\Delta] = [M^o]^{-1}[K^o]$$

$$= [B]^{-1}[M]^{-1}[K][B]$$
(12.18)

Découplage du système différentiel en *n* équations indépendantes (*n* oscillateurs élémentaires linéaires dissipatifs)

$$\ddot{q}_p + 2\lambda_p \, \dot{q}_p + \omega_{0p}^2 \, q_p = 0 \qquad (12.19)$$

avec

$$2\lambda_p = \frac{c_p^o}{m_p^o}$$

$$\omega_{0p}^2 = \delta_p = \frac{k_p^o}{m_p^o}$$
(12.17)

Intégration des n équations découplées

$$q_p = Q_p e^{-\lambda_p t} \cos(\omega_p t - \varphi_p)$$

$$(p = 1, 2, ..., n) \quad (12.21)$$

Définition de la *pulsation propre* ω_p de rang p du système *amorti*

$$\omega_p = \sqrt{\omega_{0p}^2 - \lambda_p^2} = \omega_{0p} \sqrt{1 - \eta_p^2}$$
 (12.22)

Définition des grandeurs caractéristiques par analogie avec l'oscillateur élémentaire

 λ_p coefficient d'amortissement modal

$$\eta_p = \frac{\lambda_p}{\omega_{0p}}$$
 amortissement relatif *modal* ou facteur d'amortissement *modal*

Retour des corrdonnées normales aux coordonnées spatiales

$$\mathbf{x} = [B]\mathbf{q}$$

$$= \sum_{p}^{n} \mathbf{B}_{p} Q_{p} e^{-\lambda_{p} t} \cos(\omega_{p} t - \varphi_{p}) \quad (12.23)$$

$$= \sum_{p}^{n} \beta_{p} X_{p} e^{-\lambda_{p} t} \cos(\omega_{p} t - \varphi_{p})$$
 (12.24)
mode propre de rang p

Conditions d'un lâcher initial

$$x(0) = X_0 = \sum_{p}^{n} \beta_p X_p \cos \varphi_p \quad (12.25-27)$$

$$\dot{x}(0) = V_0 = \sum_{p}^{n} \beta_p X_p (\omega_p \sin \varphi_p)$$
$$-\lambda_p \cos \varphi_p) \quad (12.26-28)$$

Prémultiplication des conditions initiales par le produit $\beta_r^T[M]$

$$\boldsymbol{\beta}_r^T[M] \boldsymbol{X}_0 = \sum_{p}^{n} \boldsymbol{\beta}_r^T[M] \boldsymbol{\beta}_p X_p \cos \varphi_p$$

$$\boldsymbol{\beta}_r^T[M] \boldsymbol{V}_0 = \sum_p^n \boldsymbol{\beta}_r^T[M] \boldsymbol{\beta}_p \, X_p \left(\omega_p \sin \varphi_p - \lambda_p \cos \varphi_p \right)$$

Extraction de l'*amplitude de référence* et de la *phase* du mode de rang *r*

$$X_r \cos \varphi_r = \frac{1}{m_r^o} \boldsymbol{\beta}_r^T [M] X_0 \quad (12.29)$$

$$X_r \sin \varphi_r = \frac{1}{m_r^o \omega_r} \beta_r^T [M] (V_0 + \lambda_r X_0)$$
 (12.30)

Réponse du système aux conditions initiales

$$\vec{x}(t) = \sum_{p=I}^{n} \overrightarrow{\beta_{p}} X_{p} e^{-\lambda_{p} t} \cos(\omega_{p} t - \varphi_{p}) = \sum_{p=I}^{n} \frac{1}{m_{p}^{0}} \overrightarrow{\beta_{p}} e^{-\lambda_{p} t} \left(\overrightarrow{\beta_{p}^{T}} [M] \overrightarrow{X_{0}} \cos(\omega_{p} t) + \frac{1}{\omega_{p}} \overrightarrow{\beta_{p}^{T}} [M] (\overrightarrow{V_{0}} + \lambda_{p} \overrightarrow{X_{0}}) \sin(\omega_{p} t) \right)$$

EPFL Systèmes Caughey

Commentaires sur les systèmes à amortissement classique

- les vecteurs modaux (vecteurs propres de la matrice [B]) sont identiques à ceux du système conservatif associé, dont ils possèdent les propriétés d'orthogonalité;
- les solutions du système dissipatif ont, à l'amortissement près, la même structure que celles du système conservatif
- l'amortissement relatif est différent pour chaque mode propre.

EPFL Systèmes non-satisfaisant Caughey

Recherche d'une solution approchée

On calcule les modes propres et les valeurs propres pour le cas conservatif.

Alors on utilise un concept similaire au quotient de Rayleigh mais avec l'amortissement:

$$R_{\lambda}(\vec{u}) = \frac{1}{2} \frac{\vec{u}^T[C]\vec{u}}{\vec{u}^T[M]\vec{u}}$$

$$\lambda_{p} = R_{\lambda}(\overrightarrow{\beta_{p}}) = \frac{1}{2} \frac{\overrightarrow{\beta_{p}}^{T}[C]\overrightarrow{\beta_{p}}}{\overrightarrow{\beta_{p}}^{T}[M]\overrightarrow{\beta_{p}}}$$